Nordins noter 📗

Search

Search IconIcon to open search

Ziegler-Nichols metoden

Last updated Oct 31, 2024 Edit Source

Man sætter $I$ og $D$ til 0, og så stiger $K_p$ fra 0 indtil den får den ultimative $K_u$ Så bruger man $K_u$ og $T_u$ til at finde alle de andre $P$, $I$ og $D$ den ultimative $K_u$ kan defines som 1/M og M er amplitude ratioen. $K_i = K_p/T_i$ og $K_d = K_pT_d$

Control Type$K_p$$T_i$$T_d$$K_i$$K_d$
P$0.5K_u$
PI$0.45K_u$$0.8\overline3T_u$$0.54K_u/T_u$
PD$0.8K_u$$0.125T_u$$0.10K_uT_u$
classic PID$0.6K_u$$0.5T_u$$0.125T_u$$1.2\frac{K_u}{T_u}$$0.075K_uT_u$
Pessen Integral Rule$0.7K_u$$0.4T_u$$0.15T_u$$1.75\frac{K_u}{T_u}$$0.105K_uT_u$
some overshoot$0.3\overline{3}K_u$$0.50T_u$$0.3\overline3T_u$$0.6\overline6\frac{K_u}{T_u}$$0.1\overline1K_uT_u$
no overshoot$0.20K_u$$0.50T_u$$0.3\overline3T_u$$0.4\frac{K_u}{T_u}$$0.06\overline6K_uT_u$

These 3 parameters are used to establish the correction ${\displaystyle u(t)}$ from the error ${\displaystyle e(t)}$ via the equation:

De her 3 parameter er brugt til at finde den rigtige

$u(t) = K_p \left( e(t) + \frac{1}{T_i} \int_0^t e(\tau) , d\tau + T_d \frac{de(t)}{dt} \right)$

which has the following transfer function relationship between error and controller output:

${\displaystyle u(s)=K_{p}\left(1+{\frac {1}{T_{i}s}}+T_{d}s\right)e(s)=K_{p}\left({\frac {T_{d}T_{i}s^{2}+T_{i}s+1}{T_{i}s}}\right)e(s)}$